Design of multi-target activity landscapes that capture hierarchical activity cliff distributions
نویسندگان
چکیده
An activity landscape model of a compound data set can be rationalized as a graphical representation that integrates molecular similarity and potency relationships. Activity landscape representations of different design are utilized to aid in the analysis of structure-activity relationships and the selection of informative compounds. Activity landscape models reported thus far focus on a single target (i.e., a single biological activity) or at most two targets, giving rise to selectivity landscapes. For compounds active against more than two targets, landscapes representing multitarget activities are difficult to conceptualize and have not yet been reported. Herein, we present a first activity landscape design that integrates compound potency relationships across multiple targets in a formally consistent manner. These multitarget activity landscapes are based on a general activity cliff classification scheme and are visualized in graph representations, where activity cliffs are represented as edges. Furthermore, the contributions of individual compounds to structure-activity relationship discontinuity across multiple targets are monitored. The methodology has been applied to derive multitarget activity landscapes for compound data sets active against different target families. The resulting landscapes identify single-, dual-, and triple-target activity cliffs and reveal the presence of hierarchical cliff distributions. From these multitarget activity landscapes, compounds forming complex activity cliffs can be readily selected.
منابع مشابه
Computational Methods Generating High-Resolution Views of Complex Structure-Activity Relationships
The analysis of structure-activity relationships (SARs) of small bioactive compounds is a central task in medicinal chemistry and pharmaceutical research. The study of SARs is in principle not limited to computational methods, however, as data sets rapidly grow in size, advanced computational approaches become indispensable for SAR analysis. Activity landscapes are one of the preferred and wide...
متن کاملMulti-Criteria Risk-Benefit Analysis of Health Care Management
Abstract Purpose of this paper: The objectives of this paper are two folds: (1) utilizing hierarchical fuzzy technique for order preference by similarity to ideal solution (TOPSIS) approach to evaluate the most suitable RFID-based systems decision, and (2) to highlight key risks and benefits of radio frequency identification technology in healthcare industry. Design/methodology/approach: R...
متن کاملPrioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems.
Across large parts of the world, wildlife has to coexist with human activity in highly modified and fragmented landscapes. Combining concepts from population viability analysis and spatial reserve design, this study develops efficient quantitative methods for identifying conservation core areas at large, even national or continental scales. The proposed methods emphasize long-term population pe...
متن کاملBayesian Estimation of Parameters in the Exponentiated Gumbel Distribution
Abstract: The Exponentiated Gumbel (EG) distribution has been proposed to capture some aspects of the data that the Gumbel distribution fails to specify. In this paper, we estimate the EG's parameters in the Bayesian framework. We consider a 2-level hierarchical structure for prior distribution. As the posterior distributions do not admit a closed form, we do an approximated inference by using ...
متن کاملFollow up: Advancing the activity cliff concept, part II
We present a follow up contribution to further complement a previous commentary on the activity cliff concept and recent advances in activity cliff research. Activity cliffs have originally been defined as pairs of structurally similar compounds that display a large difference in potency against a given target. For medicinal chemistry, activity cliffs are of high interest because structure-acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2011